DermTech Smart Stickers can non-invasively detect RNAs that are associated with non-melanoma skin cancer

Lien Thi Vo, Rizi Ai, Maria Lee, Todd Holscher, James Rock, Burkhard Jansen, Loren Clarke, Michael D. Howell, and John W. Whitaker

1 DermTech Inc, 11099 N Torrey Pines Rd, Ste 100 La Jolla, CA 92037

INTRODUCTION

Background

- Non-melanoma skin cancers (NMSC) are the most common types of skin cancer and include both basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)\(^1\).
- NMSCs primarily form on sun exposed skin areas and are expected to cause approximately 15,000 deaths in a year\(^2\).
- Current diagnosis of NMSC relies on medical history and visual assessment of suspicious lesions.
- In some instances, it is difficult to distinguish and differentiate NMSC from actinic keratoses and other malignant and benign skin tumors from non-skin cancers, so skin biopsies are collected for further histopathologic review. This is problematic in cosmetically sensitive areas.
- We investigated whether non-invasive collection of skin tissue and subsequent genomic analysis could properly classify NMSC.

METHODS

Subjects \(\geq 18\) years of age with visually suspected NMSC were enrolled in this study from >20 clinical sites. All subjects provided written informed consent prior to enrollment.

- Skin samples were collected non-invasively from enrolled subjects using the DermTech Smart Sticker™. Skin biopsies were also collected from all subjects for histopathological confirmation.
- The breakdown of histopathologically confirmed subjects for the Training Set and Test Set is provided in the table below:

<table>
<thead>
<tr>
<th>Sample Set</th>
<th>Basal Cell Carcinoma</th>
<th>Squamous Cell Carcinoma</th>
<th>Other(^{a}/AK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Set</td>
<td>94</td>
<td>87</td>
<td>173</td>
</tr>
<tr>
<td>Test Set</td>
<td>108</td>
<td>89</td>
<td>169</td>
</tr>
</tbody>
</table>

\(^{a}\)Subjects were classified as “other” if histopathology confirmed their diagnosis as a non-cancerous skin disease including but not limited to seborrheic keratosis, actinic keratosis, verruca vulgaris, and plaque psoriasis.

- RNA was extracted from the Smart Stickers using the DermTech’s custom bead-based extraction method on the KingFisher Flex instrument (Thermo Fisher Scientific).
- Whole transcriptomic data was collected for the Training Sample Set using RNA sequencing.
- Targeted RNA AmpliSeq data was collected for the Test Sample Set.
- Random Forest machine-learning was used to analyze sequencing data.

- Applying a Random Forest algorithm to the RNA-sequencing data led to the identification of 161 candidate genes with the potential to differentiate between NMSC and NCSD.

- Targets were generated using initial 161 genes as well as 145 genes identified from literature and disease pathogenesis.
- Targeted RNA AmpliSeq data was collected using the AmpliSeq Panel of 306 genes on the Test Sample Set.
- Random Forest machine-learning was used to analyze the targeted RNA AmpliSeq data.

- 30 genes were significantly (fold change >2; multiple-testing adjusted \(P<0.05\)) increased in NMSC compared to NCSD.
- 16 genes were lower in NMSC (fold change >2; multiple-testing adjusted \(P<0.05\)).

CONCLUSIONS

- ~40% of subjects enrolled in this study had discordant pathology results from the clinical assessment and diagnosis of BCC or SCC, suggesting the importance of additional objective assessments in ruling out non-melanoma skin cancers prior to a surgical biopsy.
- Non-invasively collected skin samples (Smart Sticker™) enabled the identification of RNAs that are differentially expressed between NMSC and NCSD.
- This non-invasive platform technology creates the opportunity for a multi-gene machine-learning algorithm to rule out NMSC without the need for surgical biopsy.
- Additional studies will provide further characterization of BCC and/or SCC lesions to aid in the diagnosis of NMSC.

REFERENCES