Non-invasive tape sampling reveals a type I interferon RNA signature in cutaneous lupus erythematosus that distinguishes affected from unaffected and healthy volunteer skin

JF Merola1, CG Wagner2, S Hamann3, X Zhang4, A Thai5, C Roberts3, C Lam4, C Musselli5, G Marsh3, D Rabah5, C Barbeys, N Franchimont3, TL Reynolds3

1Harvard Medical School, Brigham and Women’s Hospital, Boston MA, USA; 2Formerly of Biogen; 3Biogen, Cambridge MA, USA, and 4Zug, Switzerland; 5Boston University Medical School, Boston MA, USA. taylor.reynolds@biogen.com

Introduction

Type I interferon genes (IFN-α) are upregulated in skin lesions and blood from patients with cutaneous lupus erythematosus (CLE). Punch biopsy, the standard diagnostic procedure, impedes patient recruitment and follow up due to risk of infection, discomfort and cosmetic scarring. This study assessed the feasibility of an adhesive tape device from DermTech, Inc. to collect RNA from affected lesions and unaffected skin (Fig. 1) in subjects with CLE, atopic dermatitis (AD) or healthy volunteers (HV), and its potential to detect gene expression differences between groups.

Hypothesis

A non-invasive adhesive tape device can be used to sample IFN-α and other genes from keratinocytes and immune cells associated with CLE pathogenesis to distinguish CLE affected (lesional) from unaffected (non-lesional) and from healthy volunteer skin.

Methods

• Subjects enrolled: Adult subjects with active discoid lupus erythematosus (DLE; n=9) or subacute CLE (S克莱; n=11) with or without systemic LE, active AD (n=4) and HV (n=10) were enrolled. The study was approved by the local IRBs.

• Biomarkers sampled: Whole blood (WB), skin tape from affected (CLE-A) and unaffected (CLE-U) skin, and punch biopsy from affected (CLE-A) skin.

• RNA amplification and protein quantification: RNA was extracted from tape using standard DermTech, Inc protocols. Gene expression was quantified by qPCR on the OpenArray platform. Immunohistochemistry (IHC) for MxA protein was performed on formalin fixed paraffin embedded punch biopsies. MxA protein was quantified with custom-designed algorithms in kitsparse, Inc. software.

• Statistics: Descriptive statistics were calculated for demographics and disease characteristics by disease groups. To accommodate for missing RNA data the following steps were taken: 1. bridging step using samples run in 2 separate assay batches, 2. Linear mixed effects model to predict gene set score under a missing at random assumption; and 3. gene wise single imputation via multivariate, unsupervised random forests. Gene set scores were computed as a mean of log expression (ΔdCt).

• GSVA: From the mean of ΔdCt results for HV subjects were used as ΔdCt calibrators. Linear mixed models were fitted to log2 transformation gene set scores with subjects as random effects. P-values from multiple comparisons were adjusted using Tukey approach. Pearson’s correlations and associated p values were calculated to determine the associations of biomarkers from skin tape RNA and IHC based on skin biopsy.

In a non-lesional area is measured in three intensity bins using color saturation thresholding; high, medium and low. Y-axis: IHC values for MXA in affected skin, MXA.High: highest bin based on colorimetric thresholding, MXA.Medium: medium and high bins, MXA.Total: low, medium and high bins. X-axis: RNA expression from affected and unaffected skin.

RESULTS

<table>
<thead>
<tr>
<th>Table 1: Subject Characteristics</th>
<th>HV</th>
<th>CLE</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Number</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
<td>55.7 ± 5.4</td>
<td>56.0 ± 12.0</td>
<td>58.0 ± 47.5 (15.9)</td>
</tr>
<tr>
<td>Gender</td>
<td>5 (M)</td>
<td>7 (M)</td>
<td>10 (M)</td>
</tr>
<tr>
<td>Race</td>
<td>African American/Asian</td>
<td>1 (10)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Black or African American White</td>
<td>9 (90)</td>
<td>6 (67)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Concomitant SLE per ACR criteria</td>
<td>N/A</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Concomitant medication n (%)</td>
<td>0 (78)</td>
<td>1 (100)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>0 (55)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Prednisone</td>
<td>0 (2)</td>
<td>0 (22)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Colchicine</td>
<td>0 (3)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Etoposide</td>
<td>0 (2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Fluorouracil</td>
<td>0 (1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Disease Activity</td>
<td>N/A</td>
<td>13.3</td>
<td>20</td>
</tr>
<tr>
<td>PGA mm Mean</td>
<td>N/A</td>
<td>11.8</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Differential expression of IFN-α genes, detected with the DermTech tape device, is more pronounced in skin than in whole blood

Figure 1: Sampling with the DermTech, Inc. device.

Figure 2: Detection of IFN-α gene expression in skin with the DermTech, Inc. tape device. DLE, discoid lupus; WB, whole blood; a, affected skin; u, unaffected skin; HV, healthy volunteer.

Differential expression for an abbreviated (22-gene) IFN-α gene set between DLE-A and HV was more pronounced in skin (9-fold) than in whole blood (7-fold).

In this comparison, 1/5 subjects had concordant SLE.

Figure 3: Gene expression in CLE-A, CLE-U, AD and HV for gene set. In A) IFN-α Gene expression and C) CLE upregulated Gene expression.

Increased gene expression in CLE-A vs. HV

Figure 4: Gene expression in CLE-A, CLE-U, AD and HV for plasmacytoid dendritic cell related gene set.

A) IFN-α Gene expression

B) Cytotoxic T cell Gene expression

C) CLE upregulated Gene expression

Figure 5: Heatmap of each gene set showing differential expression relative to the mean of HV.

IFN-α, a cytosolic RNA virus helicase, is an interferon regulated protein, is increased in skin of CLE but not AD subjects

MXA, an interferon regulated protein, is increased in skin of CLE but not AD subjects

IHC MXA protein correlates with MXA RNA measured by tape sampling and amplification

Figure 6: MXA IHC in skin biopsies of AD, SCLE, DLE and HV. MXA immunoreactivity per skin region is measured in three intensity bins using color saturation thresholding; high, medium and low. Y-axis: IHC values for MXA in affected skin, MXA.High: highest bin based on colorimetric thresholding, MXA.Medium: medium and high bins, MXA.Total: low, medium and high bins. X-axis: RNA expression from affected and unaffected skin.

Figure 7: Correlation of MXA RNA with MXA protein expression from affected and unaffected DLE skin tape samples. A single SCLE subject is excluded as its inclusion of this subject results in a non-significant correlation (data not shown). RNA amplified from skin tape is scale-adjusted by normalising to distance from mean of CLE-A or CLE-U, respectively. R Pearson correlation, Y axis: IHC values for MXA in affected skin, MXA.High: highest bin based on colorimetric thresholding, MXA.Medium: medium and high bins, MXA.Total: low, medium and high bins. X axis: RNA expression from affected and unaffected skin.

Conclusions

• RNA from the skin surface distinguishes CLE-A from HV skin and CLE-A from CLE-U with robust fold changes in genes implicated in CLE pathogenesis including cytotoxic T cells and IFN-α.

• Differential expression of genes expressed by cytotoxic T/NK cells (GZMB, GZMT), macrophages/monocytes (SIGLEC1) and pDC/C cells (MX1) indicates that signals from inflammatory cells, in addition to those from keratinocytes, can be detected with the dermtech tape device.

• Gene sets related to pan T cells or keratinocytes were unchanged in CLE (data not shown).

• No significant changes were observed for AD skin.

• MXA RNA, sampled by tape, correlates with MXA protein measured in combined epidermis and dermis in punch biopsies.

• This non-invasive technique offers promise for the diagnosis, stratification and monitoring of patients with lupus-specific dermatologic disease.

Limitations

• Statistical power was hampered by challenges with enrollment, particularity of ACLE/SCLE subjects.

• RNA sample quality was variable such that 2 samples were omitted from analysis and 18/36 remaining samples were missing at least one important IFN-α gene. Statistical techniques implemented to accommodate for missing data are described in the methods section.

References


Acknowledgements

The authors would like to thank the following for their valuable contributions: DermTech, Inc., Robert Dunstan, Hsiu Li, David Martin, Martin Affaire, Marian Thelemes, Anne Ranger and Amy Kao.

Conflict of Interest Disclosures

SH, AT, CR, CM, OM, DR, CB, NF and TLR are employees and shareholders of Biogen. CGW and XZ are shareholders of Biogen. JFM is a consultant and/or investigator for Biogen, Abbvie, Amgen, Enanta, Pfizer, Janssen, UCB, Samumed, Science 37, Celgene, Sanofi Regeneron, Merck and GSK and a speaker for Abbvie. CT has received research grants from Biogen.